Selective and reversible interconversion of nanosliders commanded by remote control via metal-ion signaling†
Abstract
A multi-device network mainly consisting of two two-component nanosliders was formed by self-sorting of six components. Addition/removal of zinc(II) ions reversibly reorganized the network by chemical signaling involving the translocation of copper(I) from a relay station followed by the selective disassembly/assembly of one of both multi-component devices. The thus liberated machine parts served to erect a three-component nanoslider alongside the other unchanged two-component nanoslider.