Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 60, 2019
Previous Article Next Article

The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes

Author affiliations

Abstract

The oxygen evolution reaction represents an important electrochemical reaction in several energy storage and conversion devices such as water electrolyzers and metal–air batteries. Developing efficient, inexpensive and durable electrocatalysts for the oxygen evolution reaction (OER) has been one of the major focuses of applied electrochemistry and has attracted considerable research attention in the past decades. Non-oxide based transition metal compounds, typically transition metal phosphides (TMPs) and chalcogenides (TMCs), have recently emerged as new categories of OER pre-catalysts, demonstrated outstanding electrocatalytic performance as compared to the conventional oxide- or hydroxide-based OER catalysts for alkaline water electrolysis, and even shown promise to replace noble metals for proton-exchange membrane (PEM) water electrolysis. In this feature article, we will summarize the latest advances in the development of TMP- and TMC-based OER electrocatalysts. In particular, we will discuss the electrochemical stability of TMPs and TMCs predicted using Pourbaix diagrams and their morphological, structural and compositional evolution under OER conditions. We will also point out some challenges to be addressed in this specific area of research and propose further investigations yet to be done.

Graphical abstract: The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes

Back to tab navigation

Article information


Submitted
12 Apr 2019
Accepted
12 Jun 2019
First published
12 Jun 2019

Chem. Commun., 2019,55, 8744-8763
Article type
Feature Article

The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes

W. Li, D. Xiong, X. Gao and L. Liu, Chem. Commun., 2019, 55, 8744
DOI: 10.1039/C9CC02845E

Social activity

Search articles by author

Spotlight

Advertisements