Jump to main content
Jump to site search

Issue 43, 2019
Previous Article Next Article

Electric field modulated redox-driven protonation and hydration energetics in energy converting enzymes

Author affiliations

Abstract

Biological energy conversion is catalysed by proton-coupled electron transfer (PCET) reactions that form the chemical basis of respiratory and photosynthetic enzymes. Despite recent advances in structural, biophysical, and computational experiments, the mechanistic principles of these reactions still remain elusive. Based on common functional features observed in redox enzymes, we study here generic mechanistic models for water-mediated long-range PCET reactions. We show how a redox reaction within a buried protein environment creates an electric field that induces hydration changes between the proton acceptor and donor groups, and in turn, lowers the reaction barrier and increases the thermodynamic driving forces for the water-mediated PCET process. We predict linear free energy relationships, and discuss the proposed mechanism in context of PCET in cytochrome c oxidase.

Graphical abstract: Electric field modulated redox-driven protonation and hydration energetics in energy converting enzymes

Back to tab navigation

Supplementary files

Publication details

The article was received on 08 Feb 2019, accepted on 01 Apr 2019 and first published on 08 May 2019


Article type: Communication
DOI: 10.1039/C9CC01135H
Chem. Commun., 2019,55, 6078-6081
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Electric field modulated redox-driven protonation and hydration energetics in energy converting enzymes

    P. Saura, D. M. Frey, A. P. Gamiz-Hernandez and V. R. I. Kaila, Chem. Commun., 2019, 55, 6078
    DOI: 10.1039/C9CC01135H

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements