Issue 8, 2019

Bioreducible poly(urethane amine)s for robust nucleic acid transfection in stem cells

Abstract

The search for cationic polymeric carriers enabling robust gene transfection against stem cells remains a challenge. Herein, linear bioreducible poly(urethane amine)s (denoted as SSPUAs) with repeated disulfide and protonable amino groups were prepared and used as non-viral vectors for in vitro gene transfection of different stem cells. The polyurethane copolymers (denoted as SSBT) with varied molar ratios of 1,4-bis(3-aminopropyl)piperazine (BAP) and tris(2-aminoethyl) amine (TAA) moieties could lead to superb transfection activity against human adipose-derived stem cells (hADSCs) and human bone marrow stem cells (hBMSCs). Data indicated that under optimal transfection conditions, SSBT10 with a BAP/TAA molar ratio of 90/10 caused the transfection of ∼60% of green fluorescence protein-positive (GFP+) hADSCs, and SSBT30 with the ratio of 70/30 resulted in the transfection of ∼40% of GFP+ hBMSCs. Also, the SSBT30 and polyurethane with BAP residues (denoted as SSBAP) could mediate efficient gene transfer into bone marrow stem cells of experimental animals such as SD rats, beagle dogs and rhesus monkeys, with ∼40–70% of GFP+ cells. Additionally, the SSBAP elicited robust transfection ability (∼60% of GFP+ cells) against E14 mouse embryonic stem cells without compromising the expression of multipotent stemness-related markers of the cells. Importantly, the transfection efficiencies of these SSPUAs were higher as compared to those yielded by 25 kDa branched polyethylenimine and Lipofectamine 2000 reagents as positive controls. The SSBT30 was further practical to deliver siRNAs into hADSCs for BCL2L2 or TRIB2 gene silencing, causing superior gene silencing efficacy to Lipofectamine 2000. Besides their high gene transfection or silencing efficacy, these SSPUAs revealed low cytotoxicity against stem cells. This study highlights the SSPUA system as a distinct platform for robust nucleic acid delivery into stem cells.

Graphical abstract: Bioreducible poly(urethane amine)s for robust nucleic acid transfection in stem cells

Supplementary files

Article information

Article type
Paper
Submitted
15 Apr 2019
Accepted
08 Jun 2019
First published
11 Jun 2019

Biomater. Sci., 2019,7, 3510-3518

Bioreducible poly(urethane amine)s for robust nucleic acid transfection in stem cells

Y. Ye, R. Jin, X. Hu, J. Zhuang, W. Xia and C. Lin, Biomater. Sci., 2019, 7, 3510 DOI: 10.1039/C9BM00605B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements