Issue 9, 2019

Efficient synthesis of amino acid polymers for protein stabilization

Abstract

Proteins are fragile such that even freezing, drying and dehydration may induce their denaturation, aggregation, and activity loss. To protect proteins from these kinds of damage, we prepared two types of amino acid polymers, poly-(L-glutamate)-r-poly-(L-lysine) (PLG-r-PLL) and poly-L-glutamate (PLG), from the efficient ring-opening polymerization of α-amino acid N-carboxyanhydride (NCA) using lithium hexamethyldisilazide (LiHMDS) as the initiator. β-galactosidase (β-Gal) was used in this study to examine the protein protecting effect of the synthesized amino acid polymers during lyophilization. The results indicate that both PLG-r-PLL and PLG exert significant protection on β-Gal during lyophilization and improve the activity of the resulting protein from 40%, without using a protecting agent during lyophilization, to 80% of the original protein activity. Nevertheless, PLG generally performs better than PLG-r-PLL independent of the chain length. Our studies also show that PLG and PLG-r-PLL with a high content of PLG subunits display no observable cytotoxicity and hemolytic effect. Furthermore, dynamic light scattering (DLS) and transmission electron microscopy (TEM) characterization indicate that PLG protects β-Gal upon lyophilization by preventing the aggregation of β-Gal. Our studies demonstrate that amino acid polymers, such as PLG, can exert potent activity for protein stabilization. The easy operation of LiHMDS-initiated and efficient NCA polymerization implies the great potential of this strategy to prepare amino acid polymers quickly for the screening of protein stabilization and mechanism study.

Graphical abstract: Efficient synthesis of amino acid polymers for protein stabilization

Supplementary files

Article information

Article type
Paper
Submitted
26 Mar 2019
Accepted
02 Jul 2019
First published
19 Jul 2019

Biomater. Sci., 2019,7, 3675-3682

Efficient synthesis of amino acid polymers for protein stabilization

B. Li, Y. Wu, W. Zhang, S. Zhang, N. Shao, W. Zhang, L. Zhang, J. Fei, Y. Dai and R. Liu, Biomater. Sci., 2019, 7, 3675 DOI: 10.1039/C9BM00484J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements