Issue 10, 2019

Bioactive LbL-assembled multilayer nanofilms upregulate tenogenesis and angiogenesis enabling robust healing of degenerative rotator cuff tendons in vivo

Abstract

Degenerative changes to rotator cuff tendons are often diagnosed in elderly patients. Spontaneous healing of degenerative tendons is rather inefficient as a result of the lack of a suitable microenvironment for tendon stem cell differentiation and vascularization. Herein, multilayer hyaluronic acid/chitosan (HA/CS) nanofilms were assembled by a layer-by-layer assembly method onto aligned poly(ε-caprolactone) (PCL) nanofibers for use in healing degenerative tendons. Materials testing showed that the number of layers of HA/CS nanofilms could adjust the hydrophilicity and wettability of the nanofibrous membranes. In vitro, the optimal 8-layer (termed as 8LP) membrane afforded aligned morphology of tendon stem/progenitor cells (TSPCs) and up-regulated mRNA expression of tenogenic markers (SCX, BGN). In a rabbit model with disorganized rotator cuff tendons, the 8LP group up-regulated mRNA levels of collagen I/III and tenascin (TNC) at 6 weeks, but not 12 weeks, post-surgery as compared to the native PCL group. Next, vascular endothelial growth factor-loaded 8LP (termed as 8LP-V) was prepared. Compared to 8LP, 8LP-V produced higher levels of angiogenesis in the tendons at 6 or 12 weeks post-surgery, thus supplying endogenous pre-tendon growth factors (TGF-β, IGF-1) to further enhance tenogenic transcriptional factors. As a result, 8LP-V yielded thicker collagen fibers and/or higher tendon stiffness as compared to the 8LP and clinical pericardial patch groups. This study highlights the rational design of LbL-assembled multilayer HA/CS films to upregulate tenogenesis for robust healing of degenerative rotator cuff tendons.

Graphical abstract: Bioactive LbL-assembled multilayer nanofilms upregulate tenogenesis and angiogenesis enabling robust healing of degenerative rotator cuff tendons in vivo

Supplementary files

Article information

Article type
Paper
Submitted
15 Mar 2019
Accepted
08 Aug 2019
First published
13 Aug 2019

Biomater. Sci., 2019,7, 4388-4398

Bioactive LbL-assembled multilayer nanofilms upregulate tenogenesis and angiogenesis enabling robust healing of degenerative rotator cuff tendons in vivo

F. Han, P. Zhang, X. Wen, C. Lin and P. Zhao, Biomater. Sci., 2019, 7, 4388 DOI: 10.1039/C9BM00413K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements