Issue 4, 2019

pH-Responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms

Abstract

Traditional antibacterial treatments, such as chlorhexidine (CHX), destroy cariogenic biofilms. However, they exert negative effects in clinical applications, for example, teeth staining, taste disturbance and harm to oral tissue after a long-term exposure. Therefore, biocompatible strategies for efficient antibacterial drug delivery are in high demand. In this study, aimed at dental caries therapy enhancement, we designed a pH-responsive nanocarrier system, capable of releasing CHX in an acidic environment within cariogenic biofilms. Cationic poly(ethylene glycol)-block-poly(2-(((2-aminoethyl)carbamoyl)oxy)ethyl methacrylate) (PEG-b-PAECOEMA) was synthesized first. Modification of PAECOEMA by citraconic anhydride (CA) forms negatively charged PEG-b-PAECOEMA/CA, which could assemble into core–shell polyionic complex micelles (PICMs) when mixed with cationic CHX via electrostatic interactions. PICMs are stable in healthy neutral oral microenvironments with CHX encapsulated in the core and PEG shell exposed. Once in acidic milieu within caries-producing biofilms, they rapidly disassemble and release CHX cargo owing to degradation of citraconic amide groups. Molecular structures of the above copolymers were confirmed using 1H NMR and gel permeation chromatography (GPC) analysis. The pH-dependent degradation rates of citraconic amide in PEG-b-PAECOEMA/CA copolymer were measured by fluorescamine method. Atomic force microscopy (AFM) studies confirmed successful assembly of well-defined spherical PICMs in aqueous solution. The disassembly of PICMs in acidic microenvironment was observed using dynamic light scattering (DLS). PICMs showed an obvious pH-dependent drug release profile when the pH changed from 7.4 to 5.5. More importantly, the micellar system could reduce drug toxicity of CHX and exhibited outstanding antibacterial capability in the biofilm of Streptococcus mutans. Micelles constructed from pH-sensitive PEG-b-PAECOEMA/CA are highly promising for dental caries therapy and provide guidelines for drug-delivery system design in other acidic pathologic systems.

Graphical abstract: pH-Responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms

Supplementary files

Article information

Article type
Paper
Submitted
18 Dec 2018
Accepted
21 Jan 2019
First published
23 Jan 2019

Biomater. Sci., 2019,7, 1643-1651

pH-Responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms

Z. Zhao, C. Ding, Y. Wang, H. Tan and J. Li, Biomater. Sci., 2019, 7, 1643 DOI: 10.1039/C8BM01640B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements