Jump to main content
Jump to site search


Sustainable Fabrication of Green Luminescent Sulfur-Doped Graphene Quantum Dots for Rapid Visual Detection of Hemoglobin

Abstract

In this work, the sulfur-doped graphene quantum dots (S-GQDs) with stably green fluorescence were successfully synthesized by hydrothermal pyrolysis in the presence of glucose and mercaptosuccinic acid as the carbon and sulfur sources, respectively, for rapid and sensitive detection of hemoglobin (Hb). The as-prepared S-GQDs have a uniform size with mean particle diameter of 4.5 ± 0.5 nm and an excellent quantum yield of 71 %. The high sulfur content of 3.7% in the S-GQDs network can not only increase the quantum yield of S-GQDs but also enhance the electron density of S-GQDs for effective Hb detection through the π- π interaction. The S-GQDs exhibit an excellent sensitivity toward Hb detection and a linear range of 1 - 1000 nM with low limits of detection of 0.28 and 0.48 nM in phosphate buffer solution and human serum, respectively, is observed. Moreover, the fluorescence response of S-GQDs exhibits high selectivity toward Hb over the other 16 interferences including metal ions, amino acid, and proteins. Results in this work clearly demonstrate the easy and facile fabrication of S-GQDs for sensitive and selective detection of biomolecules without surface modification, which can open a new way to develop the highly efficient and robust sensing probes for the detection of biomarkers, metal ions and organic metabolites in biological applications.

Back to tab navigation

Supplementary files

Publication details

The article was received on 29 May 2019, accepted on 29 Jul 2019 and first published on 01 Aug 2019


Article type: Paper
DOI: 10.1039/C9AY01138B
Anal. Methods, 2019, Accepted Manuscript

  •   Request permissions

    Sustainable Fabrication of Green Luminescent Sulfur-Doped Graphene Quantum Dots for Rapid Visual Detection of Hemoglobin

    H. L. Tran and R. Doong, Anal. Methods, 2019, Accepted Manuscript , DOI: 10.1039/C9AY01138B

Search articles by author

Spotlight

Advertisements