Jump to main content
Jump to site search

Issue 9, 2019
Previous Article Next Article

Rapid classification of plastics by laser-induced breakdown spectroscopy (LIBS) coupled with partial least squares discrimination analysis based on variable importance (VI-PLS-DA)

Author affiliations

Abstract

With the extensive use of plastic products, the recycling and reuse of plastics raise more concerns. Laser-induced breakdown spectroscopy (LIBS) and chemometric methods have been applied to classify plastics. However, the methods are prone to fall into over-fitting when predicting unknown samples. Variable importance is the impact of input variables to classification results. Selecting input variables by variable importance can be used to avoid over-fitting, which has been used for improving model performance based on random forest (RF). However, the progress of optimizing the parameters of RF model is complex. Partial least squares discrimination analysis (PLS-DA), most widely used in spectral data, is a simple and stable method in multivariate analysis. To avoid over-fitting phenomenon and acquire stable results, this paper presents an extension of PLS-DA that uses variable importance to select input variables, namely VI-PLS-DA. In order to validate the classification ability of VI-PLS-DA for plastics, VI-PLS-DA was compared with PLS-DA, RF, and VI-RF. VI-PLS-DA has the highest classification accuracy (99.55%) and shortest classification time (0.096 ms), which indicated a good classification performance for plastics analysis.

Graphical abstract: Rapid classification of plastics by laser-induced breakdown spectroscopy (LIBS) coupled with partial least squares discrimination analysis based on variable importance (VI-PLS-DA)

Back to tab navigation

Article information


Submitted
18 Dec 2018
Accepted
31 Jan 2019
First published
31 Jan 2019

Anal. Methods, 2019,11, 1174-1179
Article type
Paper

Rapid classification of plastics by laser-induced breakdown spectroscopy (LIBS) coupled with partial least squares discrimination analysis based on variable importance (VI-PLS-DA)

K. Liu, D. Tian, H. Wang and G. Yang, Anal. Methods, 2019, 11, 1174
DOI: 10.1039/C8AY02755B

Social activity

Search articles by author

Spotlight

Advertisements