Issue 16, 2019

High spatial resolution quantitative elemental imaging of foraminifer by laser ablation-inductively coupled plasma-mass spectrometry

Abstract

Quantitative determination of the concentrations of elements and systematical characterization of their distribution in foraminifer is of vital significance. Quantitative elemental imaging by LA-ICP-MS is a useful alternative method; however, a methodology for high spatial resolution elemental imaging of foraminifer has not been obtained. In this work, a laser ablation spot size of 16 μm and a line scan speed of 8 μm s−1 were selected for elemental imaging after optimization; then, a two-point calibration strategy (TPCS) was established by combining NIST SRM 610 and NIST SRM 612 glasses with MACS-3 as external standards. The concentrations of Mg and Sr in four carbonate reference materials obtained by TPCS were close to the reference values with relative errors less than 10%. TPCS can avoid incorrect calibration caused by inhomogeneously distributed internal standards (e.g., 43Ca) between foraminifer shells and holes. A methodology for quantitative LA-ICP-MS elemental imaging of foraminifer was then developed, and high spatial resolution elemental images of Mg, Sr, and Ba were obtained. The spatial resolution of these images was calculated to be 16 × 0.40 μm per pixel. Elemental imaging of the Mg/Ca, Sr/Ca, and Ba/Ca ratios of a second foraminifer further confirmed the reproducibility of the elemental imaging methodology. The Mg/Ca ratio and the calcification temperature were found to gradually increase from the inner chambers (f-0) to the final chamber (f-1), while Sr was distributed more homogeneously and Ba showed little uptake in foraminifer shells. All these results demonstrate that this elemental imaging methodology is applicable to providing visual evidence to distinguish the elemental distributional differences in foraminifer.

Graphical abstract: High spatial resolution quantitative elemental imaging of foraminifer by laser ablation-inductively coupled plasma-mass spectrometry

Article information

Article type
Paper
Submitted
06 Dec 2018
Accepted
04 Mar 2019
First published
06 Mar 2019

Anal. Methods, 2019,11, 2129-2137

High spatial resolution quantitative elemental imaging of foraminifer by laser ablation-inductively coupled plasma-mass spectrometry

Y. Ke, J. Zhou, L. Qiao, M. Zhang, W. Guo, L. Jin and S. Hu, Anal. Methods, 2019, 11, 2129 DOI: 10.1039/C8AY02664E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements