Issue 11, 2019

A highly sensitive endotoxin sensor based on redox cycling in a nanocavity

Abstract

We report a highly sensitive and rapid electrochemical method for the detection of endotoxin, based on a Limulus amebocyte lysate (LAL) assay using redox cycling at a pair of electrodes in a nanocavity for electrochemical signal amplification. We have previously developed Boc-Leu-Gly-Arg-p-aminophenol (LGR-pAP) as a substrate for the amperometric LAL assay, and in this work, Z-Leu-Gly-Arg-aminomethylferrocene (LGR-AMF) was newly prepared. They were examined as substrates for a LAL-based endotoxin assay using a nanocavity device. During the last step of the endotoxin-induced LAL cascade reaction, pAP or AMF is generated from the substrate, which can be detected electrochemically with efficient signal amplification by redox cycling between the two electrodes in the nanocavity. A device with a 190 nm-high nanocavity was fabricated by photolithography. With the fabricated device in model assay solutions prepared by mixing LGR-pAP and pAP, we demonstrated that pAP could be quantitatively detected from the difference in oxidation potentials between LGR-pAP and pAP. For LGR-AMF and AMF, a difference in the formal potential of 0.1 V was obtained which was considered to be insufficient to distinguish AMF from LGR-AMF. However, we showed for the first time that analytes such as AMF can be detected by differences in diffusion coefficients between the analyte and coexisting molecules (such as LGR-AMF) using a device with high redox-cycling efficiency. Next, the endotoxin assay was performed using the fabricated nanocavity device. Using this method, endotoxin was detected at concentrations as low as 0.2 and 0.5 EU Lāˆ’1 after LAL reaction times of 1 h and 30 min, respectively, using the LGR-pAP substrate. However, the endotoxin assay using LGR-AMF was not successful because the clotting enzyme did not react with LGR-AMF. This problem might be solved by further design of the substrate. Our nanocavity device represents an effective platform for the simple and rapid detection of endotoxin with high sensitivity.

Graphical abstract: A highly sensitive endotoxin sensor based on redox cycling in a nanocavity

Supplementary files

Article information

Article type
Paper
Submitted
14 Mar 2019
Accepted
24 Apr 2019
First published
24 Apr 2019

Analyst, 2019,144, 3659-3667

Author version available

A highly sensitive endotoxin sensor based on redox cycling in a nanocavity

K. Ito, K. Y. Inoue, K. Ino, T. Matsue and H. Shiku, Analyst, 2019, 144, 3659 DOI: 10.1039/C9AN00478E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements