Jump to main content
Jump to site search

Issue 10, 2019
Previous Article Next Article

Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells

Author affiliations

Abstract

Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy has been used widely for probing the molecular properties of materials. Coupling a synchrotron infrared (IR) beam to an ATR element using a high numerical aperture (NA) microscope objective enhances the spatial resolution, relative to transmission or transflectance microspectroscopy, by a factor proportional to the refractive index (n) of the ATR element. This work presents the development of the synchrotron macro ATR-FTIR microspectroscopy at Australian Synchrotron Infrared Microspectroscopy (IRM) Beamline, and demonstrates that high quality FTIR chemical maps of single cells and tissues can be achieved at an enhanced spatial resolution. The so-called “hybrid” macro ATR-FTIR device was developed by modifying the cantilever arm of a standard Bruker macro ATR-FTIR unit to accept germanium (Ge) ATR elements with different facet sizes (i.e. 1 mm, 250 μm and 100 μm in diameter) suitable for different types of sample surfaces. We demonstrated the capability of the technique for high-resolution single cell analysis of malaria-infected red blood cells, individual neurons in a brain tissue and cellular structures of a Eucalyptus leaf. The ability to measure a range of samples from soft membranes to hard cell wall structures demonstrates the potential of the technique for high-resolution chemical mapping across a broad range of applications in biology, medicine and environmental science.

Graphical abstract: Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells

Back to tab navigation

Supplementary files

Publication details

The article was received on 10 Aug 2018, accepted on 04 Mar 2019 and first published on 05 Mar 2019


Article type: Paper
DOI: 10.1039/C8AN01543K
Analyst, 2019,144, 3226-3238

  •   Request permissions

    Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells

    J. Vongsvivut, D. Pérez-Guaita, B. R. Wood, P. Heraud, K. Khambatta, D. Hartnell, M. J. Hackett and M. J. Tobin, Analyst, 2019, 144, 3226
    DOI: 10.1039/C8AN01543K

Search articles by author

Spotlight

Advertisements