Jump to main content
Jump to site search

Issue 8, 2019
Previous Article Next Article

Implementing fluorescent MOFs as down-converting layers in hybrid light-emitting diodes

Author affiliations

Abstract

One of the most important non-radiative relaxation processes that limits the quantum yield of a fluorophore is related to aggregation of the molecules in the solid-state causing excimer quenching. To limit this quenching mechanism, the fluorophore can be contained within a well-ordered 3D system that minimises aggregation through rigid bonds and spatial separation in a defined topological construct. Herein, the synthesis, characterisation and application as a down-converter of a new luminescent 3D material (MOF-BTBMBA) that incorporates a building block based on a benzothiadiazole (BT) derivative (BTBMBA) in a metal–organic framework (MOF) is presented. Notably, the photoluminescence quantum yield and hybrid LED performance are significantly improved for the MOF-based device compared to that prepared with the free ligand, highlighting the effectiveness of the rigid scaffold arrangement.

Graphical abstract: Implementing fluorescent MOFs as down-converting layers in hybrid light-emitting diodes

Back to tab navigation

Supplementary files

Publication details

The article was received on 04 Jan 2019, accepted on 30 Jan 2019 and first published on 30 Jan 2019


Article type: Paper
DOI: 10.1039/C9TC00067D
J. Mater. Chem. C, 2019,7, 2394-2400
  • Open access: Creative Commons BY license
  •   Request permissions

    Implementing fluorescent MOFs as down-converting layers in hybrid light-emitting diodes

    E. Angioni, R. J. Marshall, N. J. Findlay, J. Bruckbauer, B. Breig, D. J. Wallis, R. W. Martin, R. S. Forgan and P. J. Skabara, J. Mater. Chem. C, 2019, 7, 2394
    DOI: 10.1039/C9TC00067D

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements