Jump to main content
Jump to site search

Issue 45, 2019
Previous Article Next Article

Hierarchical urchin-like CoSe2/CoSeO3 electro-catalysts for dye-sensitized solar cells: up to 19% PCE under dim light illumination

Author affiliations

Abstract

A hierarchical urchin-like structure of CoSe2/CoSeO3 (denoted as CoSe2/CoSeO3-UL) is synthesized by a one-step hydrothermal method and investigated as the electro-catalyst for the counter electrode (CE) of dye-sensitized solar cells (DSSCs). The evolution of the CoSe2/CoSeO3 nanostructures as a function of the synthesis time has been identified by scanning electron microscopy. The growth mechanism is proposed and the desired CoSe2/CoSeO3 hierarchical UL structure is noticed at 4 h. CoSe2/CoSeO3-UL consists of nanoparticles and hexagonal prisms for providing a high surface area for catalytic reactions and a one dimensional charge transport route, respectively. The results show that DSSCs using the CoSe2/CoSeO3-UL CE exhibit a higher power conversion efficiency (η) of 9.29 ± 0.24% than that of the cell using a Pt CE (8.33 ± 0.07%). Under various dim light conditions (i.e., a T5 lamp), the DSSC with the CoSe2/CoSeO3-UL CE shows outstanding η's of 19.88 ± 0.10%, 18.24 ± 0.06%, and 16.00 ± 0.13% at 7000 lux (2.21 mW cm−2), 6000 lux (1.89 mW cm−2) and 4800 lux (1.55 mW cm−2), respectively. This study demonstrates that CoSe2/CoSeO3-UL has great potential to replace Pt in DSSCs, and the application of DSSCs can be extended from outdoor to indoor conditions.

Graphical abstract: Hierarchical urchin-like CoSe2/CoSeO3 electro-catalysts for dye-sensitized solar cells: up to 19% PCE under dim light illumination

Back to tab navigation

Supplementary files

Article information


Submitted
20 Aug 2019
Accepted
21 Oct 2019
First published
21 Oct 2019

J. Mater. Chem. A, 2019,7, 26089-26097
Article type
Paper

Hierarchical urchin-like CoSe2/CoSeO3 electro-catalysts for dye-sensitized solar cells: up to 19% PCE under dim light illumination

Y. Huang, H. Chen, S. Ann, C. Li, J. T. Lin, C. Lee and K. Ho, J. Mater. Chem. A, 2019, 7, 26089
DOI: 10.1039/C9TA09166A

Social activity

Search articles by author

Spotlight

Advertisements