Jump to main content
Jump to site search


A modeling framework to assess specific energy, costs and environmental impacts of Li-ion and Na-ion batteries

Author affiliations

Abstract

Li-ion batteries (LIBs) are among the most advanced technologies for energy storage. Due to the potential criticality of lithium raw materials, Na-ion batteries (NIBs) are frequently suggested as a low-cost, environmentally benign alternative to eventually complement or even replace LIBs. Herein, we present a holistic modeling framework to assess the potential of NIB cells from a performance, cost, and environmental impact perspective. To this end, we employ a physics-based battery cell model to project practical specific energies of LIB and NIB cells subjected to varying discharge rates. The derived performance metrics are subsequently used to parameterize a bottom-up battery cell cost model and to assess life cycle greenhouse gas (GHG) emission. Benchmarking model results obtained for NIBs (NaNi1/3Co1/3Mn1/3O2 vs. hard carbon) against state-of-the-art LIBs (LiNi1/3Co1/3Mn1/3O2 vs. graphite), we find that NIBs made from currently available active materials cannot compete with LIBs in terms of performance, costs, and environmental impact. Identifying battery performance as a key parameter driving manufacturing costs and GHG emissions, we argue that in order to make NIBs competitive to LIBs, one of the main priorities of NIB research should be the development of anode and cathode materials offering specific charges, voltages, and cycle life times comparable to or higher than for LIB active materials.

Graphical abstract: A modeling framework to assess specific energy, costs and environmental impacts of Li-ion and Na-ion batteries

Back to tab navigation

Supplementary files

Publication details

The article was received on 01 Jul 2019, accepted on 19 Aug 2019 and first published on 20 Aug 2019


Article type: Paper
DOI: 10.1039/C9SE00427K
Sustainable Energy Fuels, 2019, Advance Article
  • Open access: Creative Commons BY license
  •   Request permissions

    A modeling framework to assess specific energy, costs and environmental impacts of Li-ion and Na-ion batteries

    S. F. Schneider, C. Bauer, P. Novák and E. J. Berg, Sustainable Energy Fuels, 2019, Advance Article , DOI: 10.1039/C9SE00427K

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements