Jump to main content
Jump to site search

Issue 35, 2019
Previous Article Next Article

Metal-free perovskites for non linear optical materials

Author affiliations

Abstract

We identify the existence of non linear optical (NLO) activity in a number of novel ABX3-type metal-free perovskites, where A is a highly tuneable organic cation, B is a NH4 cation and X is a halide anion. Through systematic first-principles calculations, we identify important trends to chart the second-harmonic generation of this class of materials. We study three perovskites MDABCO–NH4I3, CNDABCO–NH4I3 and ODABCO–NH4I3 for use as deep-UV second-harmonic generation materials. We identify the role of the dipole moment imparted by the organic group on the A cation as an important parameter to tune the NLO properties of these materials. We apply this knowledge functionalising the organic group DABCO with the highly polar cyanide CN group, and we demonstrate a significant improvement of the NLO response in this family of materials. These findings can accelerate the application of metalfree perovskites as inexpensive, non-toxic, earth-abundant materials for the next generation of optical communication applications.

Graphical abstract: Metal-free perovskites for non linear optical materials

Back to tab navigation

Supplementary files

Article information


Submitted
09 Jul 2019
Accepted
19 Jul 2019
First published
26 Jul 2019

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2019,10, 8187-8194
Article type
Edge Article

Metal-free perovskites for non linear optical materials

T. W. Kasel, Z. Deng, A. M. Mroz, C. H. Hendon, K. T. Butler and P. Canepa, Chem. Sci., 2019, 10, 8187
DOI: 10.1039/C9SC03378E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements