Jump to main content
Jump to site search

Issue 37, 2019
Previous Article Next Article

Systematic exploration of the mechanical properties of 13 621 inorganic compounds

Author affiliations

Abstract

In order to better understand the mechanical properties of crystalline materials, we performed a large-scale exploration of the elastic properties of 13 621 crystals from the Materials Project database, including both experimentally synthesized and hypothetical structures. We studied both their average (isotropic) behavior, as well as the anisotropy of the elastic properties: bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and linear compressibility. We show that general mechanical trends, which hold for isotropic (noncrystalline) materials at the macroscopic scale, also apply “on average” for crystals. Further, we highlight the importance of elastic anisotropy and the role of mechanical stability as playing key roles in the experimental feasibility of hypothetical compounds. We also quantify the frequency of occurrence of rare anomalous mechanical properties: 3% of the crystals feature negative linear compressibility, and only 0.3% have complete auxeticity.

Graphical abstract: Systematic exploration of the mechanical properties of 13 621 inorganic compounds

Back to tab navigation

Supplementary files

Article information


Submitted
05 Apr 2019
Accepted
30 Jul 2019
First published
31 Jul 2019

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2019,10, 8589-8599
Article type
Edge Article

Systematic exploration of the mechanical properties of 13 621 inorganic compounds

S. Chibani and F. Coudert, Chem. Sci., 2019, 10, 8589
DOI: 10.1039/C9SC01682A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements