Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 29, 2019
Previous Article Next Article

Asymmetric Baeyer–Villiger oxidation: classical and parallel kinetic resolution of 3-substituted cyclohexanones and desymmetrization of meso-disubstituted cycloketones

Author affiliations

Abstract

Regioselectivity is a crucial issue in Baeyer–Villiger (BV) oxidation. To date, few reports have addressed asymmetric BV oxidation of 3-substituted cycloketones due to the high difficulty of controlling regio- and stereoselectivity. Herein, we report the asymmetric BV oxidation of 3-substituted and meso-disubstituted cycloketones with chiral N,N′-dioxide/Sc(III) catalysts performed in three ways: classical kinetic resolution, parallel kinetic resolution and desymmetrization. The methodology was applied in the total and formal synthesis of bioactive compounds and natural products. Control experiments and calculations demonstrated that flexible and adjustable catalysts played a significant role in the chiral recognition of substrates.

Graphical abstract: Asymmetric Baeyer–Villiger oxidation: classical and parallel kinetic resolution of 3-substituted cyclohexanones and desymmetrization of meso-disubstituted cycloketones

Back to tab navigation

Supplementary files

Article information


Submitted
30 Mar 2019
Accepted
07 Jun 2019
First published
10 Jun 2019

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2019,10, 7003-7008
Article type
Edge Article

Asymmetric Baeyer–Villiger oxidation: classical and parallel kinetic resolution of 3-substituted cyclohexanones and desymmetrization of meso-disubstituted cycloketones

W. Wu, W. Cao, L. Hu, Z. Su, X. Liu and X. Feng, Chem. Sci., 2019, 10, 7003
DOI: 10.1039/C9SC01563A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements