Jump to main content
Jump to site search

Issue 21, 2019
Previous Article Next Article

Development of 68Ga-labelled ultrasound microbubbles for whole-body PET imaging

Author affiliations

Abstract

Microbubble (MB) contrast agents have revolutionalised the way ultrasound (US) imaging can be used clinically and pre-clinically. Contrast-enhanced US offers improvements in soft-tissue contrast, as well as the ability to visualise disease processes at the molecular level. However, its inability to provide in vivo whole-body imaging can hamper the development of new MB formulations. Herein, we describe a fast and efficient method for achieving 68Ga-labelling of MBs after a direct comparison of two different strategies. The optimised approach produces 68Ga-labelled MBs in good yields through the bioorthogonal inverse-electron-demand Diel–Alder reaction between a trans-cyclooctene-modified phospholipid and a new tetrazine-bearing HBED-CC chelator. The ability to noninvasively study the whole-body distribution of 68Ga-labelled MBs was demonstrated in vivo using positron emission tomography (PET). This method could be broadly applicable to other phospholipid-based formulations, providing accessible solutions for in vivo tracking of MBs.

Graphical abstract: Development of 68Ga-labelled ultrasound microbubbles for whole-body PET imaging

Back to tab navigation

Supplementary files

Publication details

The article was received on 08 Feb 2019, accepted on 18 Apr 2019 and first published on 01 May 2019


Article type: Edge Article
DOI: 10.1039/C9SC00684B
Chem. Sci., 2019,10, 5603-5615
  • Open access: Creative Commons BY-NC license
    All publication charges for this article have been paid for by the Royal Society of Chemistry

  •   Request permissions

    Development of 68Ga-labelled ultrasound microbubbles for whole-body PET imaging

    J. Hernández-Gil, M. Braga, B. I. Harriss, L. S. Carroll, C. H. Leow, M. Tang, E. O. Aboagye and N. J. Long, Chem. Sci., 2019, 10, 5603
    DOI: 10.1039/C9SC00684B

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements