Jump to main content
Jump to site search

Issue 15, 2019
Previous Article Next Article

Upconversion-mediated ZnFe2O4 nanoplatform for NIR-enhanced chemodynamic and photodynamic therapy

Author affiliations

Abstract

ZnFe2O4, a semiconductor catalyst with high photocatalytic activity, is ultrasensitive to ultraviolet (UV) light and tumor H2O2 for producing reactive oxygen species (ROS). Thereby, ZnFe2O4 can be used for photodynamic therapy (PDT) from direct electron transfer and the newly defined chemodynamic therapy (CDT) from the Fenton reaction. However, UV light has confined applicability because of its high phototoxicity, low penetration, and speedy attenuation in the biotissue. Herein, an upconversion-mediated nanoplatform with a mesoporous ZnFe2O4 shell was developed for near-infrared (NIR) light enhanced CDT and PDT. The nanoplatform (denoted as Y-UCSZ) was comprised of upconversion nanoparticles (UCNPs), silica shell, and mesoporous ZnFe2O4 shell and was synthesized through a facile hydrothermal method. The UCNPs can efficiently transfer penetrable NIR photons to UV light, which can activate ZnFe2O4 for producing singlet oxygen thus promoting the Fenton reaction for ROS generation. Besides, Y-UCSZ possesses enormous internal space, which is highly beneficial for housing DOX (doxorubicin, a chemotherapeutic agent) to realize chemotherapy. Moreover, the T2-weighted magnetic resonance imaging (MRI) effect from Fe3+ and Gd3+ ions in combination with the inherent upconversion luminescence (UCL) imaging and computed tomography (CT) from the UCNPs makes an all-in-one diagnosis and treatment system. Importantly, in vitro and in vivo assays authenticated excellent biocompatibility of the PEGylated Y-UCSZ (PEG/Y-UCSZ) and high anticancer effectiveness of the DOX loaded PEG/Y-UCSZ (PEG/Y-UCSZ&DOX), indicating its potential application in the cancer treatment field.

Graphical abstract: Upconversion-mediated ZnFe2O4 nanoplatform for NIR-enhanced chemodynamic and photodynamic therapy

Back to tab navigation

Supplementary files

Publication details

The article was received on 23 Jan 2019, accepted on 05 Mar 2019 and first published on 06 Mar 2019


Article type: Edge Article
DOI: 10.1039/C9SC00387H
Chem. Sci., 2019,10, 4259-4271
  • Open access: Creative Commons BY license
    All publication charges for this article have been paid for by the Royal Society of Chemistry

  •   Request permissions

    Upconversion-mediated ZnFe2O4 nanoplatform for NIR-enhanced chemodynamic and photodynamic therapy

    S. Dong, J. Xu, T. Jia, M. Xu, C. Zhong, G. Yang, J. Li, D. Yang, F. He, S. Gai, P. Yang and J. Lin, Chem. Sci., 2019, 10, 4259
    DOI: 10.1039/C9SC00387H

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements