Issue 64, 2019, Issue in Progress

The effects of trace metal impurities on Ga-68-radiolabelling with a tris(3-hydroxy-1,6-dimethylpyridin-4-one) (THP) chelator

Abstract

GMP-grade 68Ge/68Ga generators provide access to positron-emitting 68Ga, enabling preparation of Positron Emission Tomography (PET) tracers and PET imaging at sites that do not have access to cyclotron-produced radionuclides. Radiotracers based on tris(3-hydroxy-1,6-dimethylpyridin-4-one) (THP) chelators enable simple one-step preparations of 68Ga PET radiopharmaceuticals from pre-fabricated kits without pre-processing of generator eluate or post-purification. However, trace metal impurities eluted along with 68Ga could compete for THP and reduce radiochemical yields (RCY). We have quantified trace metal impurities in 68Ga eluate from an Eckert & Ziegler (E&Z) generator using ICP-MS. The metals Al, Fe, natGa, Pb, Ti and natZn were present in generator eluate in significantly higher concentrations than in the starting eluent solution. Concentrations of Fe and natGa in eluate were in the range of 0.01–0.1 μM, Al, Zn and Pb in the range of 0.1–1 μM, and Ti in the range of 0.9–1.5 μM. To assess the ability of THP to chelate 68Ga in the presence of such metal ions, radiolabelling reactions were undertaken in which selected metal ions were added to make them equimolar with THP, or higher. Al3+, Fe3+, natGa3+ and Ti4+ reduced RCY at concentrations equimolar with THP and higher, but at lower concentrations they did not affect RCY. Pb2+, Zn2+, Ni2+ and Cr3+ had no effect on RCY (even under conditions in which each metal ion was present in 100-fold molar excess over THP). The multi-sample ICP-MS analysis reported here is (to date) the most comprehensive and robust quantification of metal impurities in the widely used E&Z 68Ga generator. 68Ga from an E&Z generator enables near-quantitative radiolabelling of THP at chelator concentrations as low as 5 μM (lower than other common gallium chelators) without pre-processing. The combination of Al3+, Fe3+, natGa3+ and Ti4+ in unprocessed 68Ga eluate is likely to decrease RCY of 68Ga radiolabelling if a lower amount of THP chelator is used, and future kit design should take this into account. To increase specific activities by using even lower THP concentrations, purification of 68Ga from trace metal ions will likely be required.

Graphical abstract: The effects of trace metal impurities on Ga-68-radiolabelling with a tris(3-hydroxy-1,6-dimethylpyridin-4-one) (THP) chelator

Supplementary files

Article information

Article type
Paper
Submitted
23 Sep 2019
Accepted
25 Oct 2019
First published
14 Nov 2019
This article is Open Access
Creative Commons BY license

RSC Adv., 2019,9, 37214-37221

The effects of trace metal impurities on Ga-68-radiolabelling with a tris(3-hydroxy-1,6-dimethylpyridin-4-one) (THP) chelator

R. Cusnir, A. Cakebread, M. S. Cooper, J. D. Young, P. J. Blower and M. T. Ma, RSC Adv., 2019, 9, 37214 DOI: 10.1039/C9RA07723E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements