Jump to main content
Jump to site search

Issue 19, 2019, Issue in Progress
Previous Article Next Article

High pairing rate Janus-structured microfibers and array: high-efficiency conjugate electrospinning fabrication, structure analysis and co-instantaneous multifunctionality of anisotropic conduction, magnetism and enhanced red fluorescence

Author affiliations

Abstract

A highly efficient and convenient conjugate electrospinning technique is employed to obtain high pairing rate Janus-structured microfibers in electrospun products by optimizing the spinning conditions. In addition, a Janus-structured microfiber array rendering tri-functional performance of tunable magnetism, electrically anisotropic conduction and increased fluorescence is prepared via the same technique using a rotating device as a fiber collector. The array is composed of an ordered arrangement of Janus-structured microfibers. The extraordinary Janus structure and oriented arrangement endow the Janus-structured microfibers with excellent fluorescence. The fluorescence intensity of the Janus-structured microfiber array is, respectively, 1.21, 14.3 and 20.3 times higher than that of the Janus-structured microfiber non-array, the composite microfiber array and the composite microfiber non-array. The Janus-structured microfiber array has a similar saturation magnetization to the contradistinctive specimens. Additionally, the magnetism of the Janus-structured microfiber array can be modulated with different mass ratios of Fe3O4 nanoparticles (NPs), and the conductance ratio between the length direction and diameter direction of the Janus-structured microfibers for the array can be tuned from 103 to 106 by adding a higher percentage of polyaniline (PANI). Our new findings have established a highly efficient conjugate electrospinning technique to prepare Janus-structured microfibers of high pairing rate, and complete isolation of fluorescent material from magnetic nanoparticles and conductive material is accomplished in the Janus-structured microfibers to ensure high fluorescence intensity without a notably disadvantageous influence of dark-colored substances. More importantly, the fabrication technique for the Janus-structured microfibers can be generalized to manufacture other Janus-structured multifunctional materials.

Graphical abstract: High pairing rate Janus-structured microfibers and array: high-efficiency conjugate electrospinning fabrication, structure analysis and co-instantaneous multifunctionality of anisotropic conduction, magnetism and enhanced red fluorescence

Back to tab navigation

Supplementary files

Publication details

The article was received on 14 Feb 2019, accepted on 26 Mar 2019 and first published on 05 Apr 2019


Article type: Paper
DOI: 10.1039/C9RA01147A
RSC Adv., 2019,9, 10679-10692
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    High pairing rate Janus-structured microfibers and array: high-efficiency conjugate electrospinning fabrication, structure analysis and co-instantaneous multifunctionality of anisotropic conduction, magnetism and enhanced red fluorescence

    J. Tian, Q. Ma, W. Yu, D. Li, X. Dong, G. Liu and J. Wang, RSC Adv., 2019, 9, 10679
    DOI: 10.1039/C9RA01147A

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements