Jump to main content
Jump to site search

Issue 8, 2019, Issue in Progress
Previous Article Next Article

An ultrasonic method for the synthesis, control and optimization of CdS/TiO2 core–shell nanocomposites

Author affiliations

Abstract

In this study, an ultrasonic method was utilized in combination with microemulsion to synthesize CdS/TiO2 core–shell nanoparticles and control their particle size and ultimately optimize the influential parameters. Moreover, response surface methodology (RSM) was used to optimize the thickness of the shell. Herein, four parameters, i.e. temperature (67–79 °C), synthesis retention time (45–105 min), TiO2 : CdS ratio (1.5–7.5) and the power of ultrasound waves (37–53 watt), were optimized to synthesize nanoparticles with an average size of up to 10 nm. A correlation equation was introduced for the size range of 10–90 nm, which was then proven to have excellent predictions. To verify the proposed model, two different sets of combinations were selected to synthesize 10 nm composites, and consequently, nanocomposites with the sizes of 10.4 and 10.9 nm were successfully synthesized. The power of ultrasound waves and retention time had the most influence on the size of the particles. Further experiments proved that the optical absorption spectrum of the composite particles was extended to the visible region. Furthermore, the formation of CdS/TiO2 core–shell nanocomposites was confirmed by different characterization techniques including XRD, TEM, EDAX, UV-vis, FTIR and DLS.

Graphical abstract: An ultrasonic method for the synthesis, control and optimization of CdS/TiO2 core–shell nanocomposites

Back to tab navigation

Article information


Submitted
11 Dec 2018
Accepted
17 Jan 2019
First published
04 Feb 2019

This article is Open Access

RSC Adv., 2019,9, 4314-4324
Article type
Paper

An ultrasonic method for the synthesis, control and optimization of CdS/TiO2 core–shell nanocomposites

S. Alizadeh, N. Fallah and M. Nikazar, RSC Adv., 2019, 9, 4314
DOI: 10.1039/C8RA10155H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements