Jump to main content
Jump to site search

Issue 2, 2019, Issue in Progress
Previous Article Next Article

Nano-sized mesoporous phosphated tin oxide as an efficient solid acid catalyst

Author affiliations

Abstract

Herein, we prepared a mesoporous tin oxide catalyst (mSnO2) activated with phosphate species by the adsorption of phosphate ions from a phosphoric acid solution onto tin oxyhydroxide (Sn(OH)4) surface. The phosphate content ranged from 3 to 45 wt%. The nonaqueous titration of n-butylamine in acetonitrile was used to determine the total surface acidity level. FTIR of chemically adsorbed pyridine was used to differentiate between the Lewis and Brönsted acid sites. Thermal and X-ray diffraction analysis indicated that the addition of phosphate groups stabilized the mesostructure of mSnO2 and enabled it to keep its crystalline size at the nanoscale. FTIR analysis indicated the polymerization of the HPO42− groups into P2O74−, which in turn reacts with SnO2 to form a SnP2O7 layer, which stabilizes the mesoporous structure of SnO2. The acidity measurements showed that the phosphate species are distributed homogeneously over the mSnO2 surface until surface saturation coverage at 25 wt% PO43−, at which point the acid strength and surface acidity level are maximized. The catalytic activity was tested for the synthesis of hydroquinone diacetate, where it was found that the % yield of hydroquinone diacetate compound increased gradually with the increase in PO43− loading on mSnO2 until it reached a maximum value of 93.2% for the 25% PO43−/mSnO2 catalyst with 100% selectivity and excellent reusability for three consecutive runs with no loss in activity.

Graphical abstract: Nano-sized mesoporous phosphated tin oxide as an efficient solid acid catalyst

Back to tab navigation

Supplementary files

Publication details

The article was received on 29 Oct 2018, accepted on 18 Dec 2018 and first published on 08 Jan 2019


Article type: Paper
DOI: 10.1039/C8RA08962K
RSC Adv., 2019,9, 810-818
  • Open access: Creative Commons BY license
  •   Request permissions

    Nano-sized mesoporous phosphated tin oxide as an efficient solid acid catalyst

    S. M. Hassan, M. A. Mannaa and A. A. Ibrahim, RSC Adv., 2019, 9, 810
    DOI: 10.1039/C8RA08962K

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements