Jump to main content
Jump to site search

Issue 32, 2019
Previous Article Next Article

Bromine polycondensation in pristine and fluorinated graphitic carbons

Author affiliations

Abstract

Despite decades of study the precise behavior of bromine in graphitic carbons remains unclear. In this report, using Raman spectroscopy, we reveal two types of bromine structure in graphitic carbon materials. Between fluorinated graphene layers with a composition close to C2F, Br2 molecules are intercalated in a form similar to liquid bromine. Bromination of pristine and low-fluorinated graphitic carbons behaves very differently with distinct Br-related Raman spectra. With the guidance of density functional theory (DFT) calculations, all Raman features are assigned to normal vibration modes of specific bromine species over graphene and fluorinated graphene. When intercalated between extended non-fluorinated sp2-hybridized carbon regions, physisorbed Br2 molecules move freely across the non-functionalized region toward the CF border. Multiple Br2 molecules then combine spontaneously into Br3-based chains, whose coupling activates otherwise Raman inactive modes. Significant charge transfer to bromine species occurs in this case. DFT calculated frequencies match precisely the experimental Br-related Raman bands observed in the intercalation carbon compounds. The fluorine-catalyzed bromine chain-formation process shown here is general and should also operate with edges and other defect species.

Graphical abstract: Bromine polycondensation in pristine and fluorinated graphitic carbons

Back to tab navigation

Supplementary files

Publication details

The article was received on 04 Mar 2019, accepted on 26 Jul 2019 and first published on 26 Jul 2019


Article type: Paper
DOI: 10.1039/C9NR01922G
Nanoscale, 2019,11, 15298-15306

  •   Request permissions

    Bromine polycondensation in pristine and fluorinated graphitic carbons

    O. V. Sedelnikova, C. P. Ewels, D. V. Pinakov, G. N. Chekhova, E. Flahaut, A. V. Okotrub and L. G. Bulusheva, Nanoscale, 2019, 11, 15298
    DOI: 10.1039/C9NR01922G

Search articles by author

Spotlight

Advertisements