Jump to main content
Jump to site search

Issue 11, 2019
Previous Article Next Article

Anisotropy control in magnetic nanostructures through field-assisted chemical vapor deposition

Author affiliations

Abstract

Chemical vapor deposition of iron pentacarbonyl (Fe(CO)5) in an external magnetic field (B = 1.00 T) was found to significantly affect the microstructure and anisotropy of as-deposited iron crystallites that could be transformed into anisotropic hematite (α-Fe2O3) nanorods by aerobic oxidation. The deterministic influence of external magnetic fields on CVD deposits was found to be substrate-independent as demonstrated by the growth of anisotropic α-Fe columns on FTO (F:SnO2) and Si (100), whereas the films deposited in the absence of the magnetic field were constituted by isotropic grains. TEM images revealed gradual increase in average crystallite size in correlation to the increasing field strength and orientation, which indicates the potential of magnetic field-assisted chemical vapor deposition (mfCVD) in controlling the texture of the CVD grown thin films. Given the facet-dependent activity of hematite in forming surface-oxygenated intermediates, exposure of crystalline facets and planes with high atomic density and electron mobilities is crucial for oxygen evolution reactions. The field-induced anisotropy in iron nanocolumns acting as templates for growing textured hematite pillars resulted in two-fold higher photoelectrochemical efficiency for hematite films grown under external magnetic fields (J = 0.050 mA cm−2), when compared to films grown in zero field (J = 0.027 mA cm−2). The dark current measurements indicated faster surface kinetics as the origin of the increased catalytic activity.

Graphical abstract: Anisotropy control in magnetic nanostructures through field-assisted chemical vapor deposition

Back to tab navigation

Supplementary files

Article information


Submitted
31 Jul 2019
Accepted
25 Sep 2019
First published
17 Oct 2019

This article is Open Access

Nanoscale Adv., 2019,1, 4290-4295
Article type
Communication

Anisotropy control in magnetic nanostructures through field-assisted chemical vapor deposition

D. Stadler, T. Brede, D. Schwarzbach, F. Maccari, T. Fischer, O. Gutfleisch, C. A. Volkert and S. Mathur, Nanoscale Adv., 2019, 1, 4290
DOI: 10.1039/C9NA00467J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements