Jump to main content
Jump to site search

Issue 2, 2019
Previous Article Next Article

An atom efficient, single-source precursor route to plasmonic CuS nanocrystals

Author affiliations

Abstract

The synthesis of colloidal semiconductor nanocrystals (NCs) from single-source precursors offers simplified manufacturing processes at the cost of reduced atom efficiency. Self-capping routes have the potential to maximise this efficiency although investigation has so far been limited to organic solvents. Here we present the synthesis of copper sulfide NCs via the decomposition of a copper dithiocarbamate complex in water. Nanocrystalline covellite particles were prepared without the need for additional capping ligand and exhibited a hollow nanosphere morphology. Mass spectrometry of the water-stable NCs indicated the presence of a number of surface ligands, including a small amine fragment of the single-source precursor (SSP) complex. A broad plasmon resonance in the near-infrared (NIR) at 990 nm was also observed and the photothermal effect of this demonstrated. Cytotoxicity experiments indicated cell viability remained above 95% for NC concentrations up to 1 mg mL−1, indicating high biocompatibility.

Graphical abstract: An atom efficient, single-source precursor route to plasmonic CuS nanocrystals

Back to tab navigation

Supplementary files

Publication details

The article was received on 02 Nov 2018, accepted on 05 Nov 2018 and first published on 06 Nov 2018


Article type: Communication
DOI: 10.1039/C8NA00325D
Nanoscale Adv., 2019,1, 522-526
  • Open access: Creative Commons BY license
  •   Request permissions

    An atom efficient, single-source precursor route to plasmonic CuS nanocrystals

    P. B. Mann, I. J. McGregor, S. Bourke, M. Burkitt-Gray, S. Fairclough, M. T. Ma, G. Hogarth, M. Thanou, N. Long and M. Green, Nanoscale Adv., 2019, 1, 522
    DOI: 10.1039/C8NA00325D

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements