Jump to main content
Jump to site search

Volume 219, 2019
Previous Article Next Article

High-throughput protein nanopatterning

Author affiliations

Abstract

High-throughput and large-scale patterning of enzymes with sub-10 nm resolution, the size range of individual protein molecules, is crucial for propelling advancement in a variety of areas, from the development of chip-based biomolecular nano-devices to molecular-level studies of cell biology. Despite recent developments in bio-nanofabrication technology, combining 10 nm resolution with high-throughput and large-scale patterning of enzymes is still an open challenge. Here, we demonstrate a high resolution and high-throughput patterning method to generate enzyme nanopatterns with sub-10 nm resolution by using thermochemical scanning probe lithography (tc-SPL). First, tc-SPL is used to generate amine patterns on a methacrylate copolymer film. Thermolysin enzymes functionalized with sulfonate-containing fluorescent labels (Alexa-488) are then directly immobilized onto the amine patterns through electrostatic interaction. Enzyme patterns with sub-10 nm line width are obtained as evidenced by atomic force microscopy (AFM) and fluorescence microscopy. Moreover, we demonstrate large-scale and high throughput (0.13 × 0.1 mm2 at a throughput of 5.2 × 104 μm2 h−1) patterning of enzymes incorporating 10 nm detailed pattern features. This straightforward and high-throughput method of fabricating enzyme nanopatterns will have a significant impact on future bio-nanotechnology applications and molecular-level biological studies. By scaling up using parallel probes, tc-SPL is promising for implementation to scale up the fabrication of nano-biodevices.

Graphical abstract: High-throughput protein nanopatterning

Back to tab navigation

Supplementary files

Article information


Submitted
02 Mar 2019
Accepted
11 Mar 2019
First published
14 Mar 2019

Faraday Discuss., 2019,219, 33-43
Article type
Paper

High-throughput protein nanopatterning

X. Liu, M. Kumar, A. Calo’, E. Albisetti, X. Zheng, K. B. Manning, E. Elacqua, M. Weck, R. V. Ulijn and E. Riedo, Faraday Discuss., 2019, 219, 33
DOI: 10.1039/C9FD00025A

Social activity

Search articles by author

Spotlight

Advertisements