Jump to main content
Jump to site search

Issue 9, 2019
Previous Article Next Article

Engineered nanomaterials in the context of global element cycles

Author affiliations

Abstract

Environmental nanomaterials researchers are challenged to discern relevant use and release scenarios of engineered nanomaterials (ENMs). Here, we evaluated ENMs within the framework of global anthropogenic element cycles. To provide a bird's-eye view of the status and scale of nanotechnologies, we constructed a multifaceted framework to discern industrial relevance by employing metrics, such as technology readiness level, annual production volumes, synthetic efficiencies, and projected annual market growth rates across twenty-five ENMs. For eight detailed element cycles (Ce, Ag, Zn, Al, Co, Cu, Ni, and Fe), ENMs had a minor influence on anthropogenic element cycling (2 × 10−6 to 2% of total extracted ore), while nSiO2 represents 3–25% of Si metal mined. Production volumes represent only a portion of the material mined for nanomaterial synthesis; synthetic yields for metal, metalloid, and metal oxide nanomaterials were high (typically greater than 90%), while carbon-based nanomaterials have dramatically lower synthetic efficiencies (8–33%). Finally, technology readiness levels indicated that carbon-based nanomaterials have a diverse suite of current applications, whereas metal and metalloid-oxide applications are more limited in number. Several markets continue to grow, particularly quantum dots (58% projected annual growth from 2015–2025). Probing the vast nanomaterial space en masse serves to focus environmental health and safety efforts on materials that are most industrially relevant to biogeochemical processes, and this article is first to consider ENMs within the framework of anthropogenic element cycling of bulk materials at the global level.

Graphical abstract: Engineered nanomaterials in the context of global element cycles

Back to tab navigation

Supplementary files

Publication details

The article was received on 19 Mar 2019, accepted on 11 Jul 2019 and first published on 23 Jul 2019


Article type: Paper
DOI: 10.1039/C9EN00322C
Environ. Sci.: Nano, 2019,6, 2697-2711
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Engineered nanomaterials in the context of global element cycles

    N. Z. Janković and D. L. Plata, Environ. Sci.: Nano, 2019, 6, 2697
    DOI: 10.1039/C9EN00322C

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements