Jump to main content
Jump to site search

Issue 7, 2019
Previous Article Next Article

Tools and rules for modelling uptake and bioaccumulation of nanomaterials in invertebrate organisms

Author affiliations

Abstract

Quantification of the uptake and elimination of nanomaterials (NMs) by organisms is key in assessing the environmental risks of NMs. For this, uptake models for conventional solutes may be used, although no consensus exists on their applicability for NMs. In this critical review therefore, conventional modelling approaches are scrutinised for their applicability for NMs. Statically derived accumulation factors, like BCF or BAF based on measured concentrations, are considered to be flawed because NMs are thermodynamically not stable, an important assumption for this approach. Dynamically derived accumulation factors, based on kinetic exposure experiments, may be applicable because no equilibrium between the organism and exposure medium is needed. Currently there is no full understanding of the passive uptake of NMs, which hampers assessment of the applicability of biotic ligand models. Passive uptake, however, is generally considered to be very limited, which would imply a limited applicability of BLMs for NMs. Physiologically based pharmacokinetic (PBPK) models, or biodynamic models, have successfully been applied in uptake studies with NMs. Their underlying assumptions can be met in experiments addressing NMs and case studies presented in this review demonstrate their applicability to model NM-form specific kinetics, integrated with environmental fate models, including relevant physiological processes. Their application requires the a priori definition of the major mechanisms driving the uptake kinetics and the quantification of the associated kinetic rate constants. This limits their application to those mechanisms for which the kinetic rate constants can actually be quantified. Within these limitations, PBPK models have been shown to be applicable and provide a promising general approach to improve modelling of NM-accumulation in organisms.

Graphical abstract: Tools and rules for modelling uptake and bioaccumulation of nanomaterials in invertebrate organisms

Back to tab navigation

Supplementary files

Publication details

The article was received on 04 Oct 2018, accepted on 11 Apr 2019 and first published on 14 May 2019


Article type: Critical Review
DOI: 10.1039/C8EN01122B
Environ. Sci.: Nano, 2019,6, 1985-2001
  • Open access: Creative Commons BY license
  •   Request permissions

    Tools and rules for modelling uptake and bioaccumulation of nanomaterials in invertebrate organisms

    N. W. van den Brink, A. Jemec Kokalj, P. V. Silva, E. Lahive, K. Norrfors, M. Baccaro, Z. Khodaparast, S. Loureiro, D. Drobne, G. Cornelis, S. Lofts, R. D. Handy, C. Svendsen, D. Spurgeon and C. A. M. van Gestel, Environ. Sci.: Nano, 2019, 6, 1985
    DOI: 10.1039/C8EN01122B

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements