Jump to main content
Jump to site search

Issue 9, 2019
Previous Article Next Article

Quantifying and elucidating the effect of CO2 on the thermodynamics, kinetics and charge transport of AEMFCs

Author affiliations

Abstract

It has been long-recognized that carbonation of anion exchange membrane fuel cells (AEMFCs) would be an important practical barrier for their implementation in applications that use ambient air containing atmospheric CO2. Most literature discussion around AEMFC carbonation has hypothesized: (1) that the effect of carbonation is limited to an increase in the Ohmic resistance because carbonate has lower mobility than hydroxide; and/or (2) that the so-called “self-purging” mechanism could effectively decarbonate the cell and eliminate CO2-related voltage losses during operation at a reasonable operating current density (>1 A cm−2). However, this study definitively shows that neither of these assertions are correct. This work, the first experimental examination of its kind, studies the dynamics of cell carbonation and its effect on AEMFC performance over a wide range of operating currents (0.2–2.0 A cm−2), operating temperatures (60–80 °C) and CO2 concentrations in the reactant gases (5–3200 ppm). The resulting data provide for new fundamental relationships to be developed and for the root causes of increased polarization in the presence of CO2 to be quantitatively probed and deconvoluted into Ohmic, Nernstian and charge transfer components, with the Nernstian and charge transfer components controlling the cell behavior under conditions of practical interest.

Graphical abstract: Quantifying and elucidating the effect of CO2 on the thermodynamics, kinetics and charge transport of AEMFCs

Back to tab navigation

Supplementary files

Publication details

The article was received on 25 Apr 2019, accepted on 01 Jul 2019 and first published on 22 Jul 2019


Article type: Paper
DOI: 10.1039/C9EE01334B
Energy Environ. Sci., 2019,12, 2806-2819
  • Open access: Creative Commons BY license
  •   Request permissions

    Quantifying and elucidating the effect of CO2 on the thermodynamics, kinetics and charge transport of AEMFCs

    Y. Zheng, T. J. Omasta, X. Peng, L. Wang, J. R. Varcoe, B. S. Pivovar and W. E. Mustain, Energy Environ. Sci., 2019, 12, 2806
    DOI: 10.1039/C9EE01334B

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements