Issue 7, 2019

Solvent system for effective near-term production of hydroxymethylfurfural (HMF) with potential for long-term process improvement

Abstract

Production of renewable chemicals to mitigate the deleterious effects of greenhouse gas emissions requires technologies that are cost-competitive with the fossil-fuel industry, require low capital investment, and produce high-value products. We report production of 5-hydroxymethylfurfural (HMF), a valuable platform molecule from biomass-derived carbohydrates at high yields (>90%) and with excellent carbon balance (>95%) using an inexpensive solvent system composed of acetone and water. We demonstrate that HMF, a thermally unstable molecule, can be separated from this low boiling solvent system with high recovery (96%) and purity (∼99%). We show that fructose is selectively dehydrated in this solvent system from a mixture of glucose and fructose, a property that can be leveraged to integrate the proposed process with current processes for the production of high fructose corn syrup. Techno-economic analysis indicates that utilizing fructose as feedstock leads to low investment (16 MM$) and produces HMF at a minimum selling price (MSP) of $1710 per ton. The MSP can be further reduced to $1460 per ton by changing the feedstock to glucose.

Graphical abstract: Solvent system for effective near-term production of hydroxymethylfurfural (HMF) with potential for long-term process improvement

Supplementary files

Article information

Article type
Paper
Submitted
08 Feb 2019
Accepted
12 Apr 2019
First published
12 Apr 2019

Energy Environ. Sci., 2019,12, 2212-2222

Author version available

Solvent system for effective near-term production of hydroxymethylfurfural (HMF) with potential for long-term process improvement

A. H. Motagamwala, K. Huang, C. T. Maravelias and J. A. Dumesic, Energy Environ. Sci., 2019, 12, 2212 DOI: 10.1039/C9EE00447E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements