Jump to main content
Jump to site search

Issue 41, 2019
Previous Article Next Article

High relaxation barrier in neodymium furoate-based field-induced SMMs

Author affiliations

Abstract

Two new neodymium molecular magnets of formula {[Nd(α-fur)3(H2O)2]·DMF}n (1) and {[Nd0.065La0.935(α-fur)3(H2O)2]}n (2), α-fur = C4H3OCOO, have been synthesized. In (1) the furoate ligands, in bidentate bridging mode, consolidate zig-zag chains running along the a-direction. Compound (2) is a magnetically diluted complex of a polymeric chain along the b-axis. Heat capacity, dc magnetization and ac susceptibility measurements have been performed from 1.8 K up to room temperature. Ab initio calculations yielded the gyromagnetic factors gx* = 0.52, gy* = 1.03, gz* = 4.41 for (1) and gx* = 1.35, gy* = 1.98, gz* = 3.88 for (2), and predicted energy gaps of Δ/kB = 125.5 K (1) and Δ/kB = 58.8 K (2). Heat capacity and magnetometry measurements agree with these predictions, and confirm the non-negligible transversal anisotropy of the Kramers doublet ground state. A weak intrachain antiferromagnetic interaction J′/kB = −3.15 × 10−3 K was found for (1). No slow relaxation is observed at H = 0, attributed to the sizable transverse anisotropy component, and/or dipolar or exchange interactions enhancing the quantum tunnelling probability. Under an external applied field as small as 80 Oe, two slow relaxation processes appear: above 3 K the first relaxation mechanism is associated to a combination of Orbach process, with a sizeable activation energy U/kB = 121 K at 1.2 kOe for (1), Raman and direct processes; the second, slowest relaxation mechanism is associated to a direct process, affected by phonon-bottleneck effect. For complex (2) a smaller U/kB = 61 K at 1.2 kOe is found, together with larger g*-transversal terms, and the low-frequency process is quenched. The reported complexes represent rare polymeric Nd single-ion magnets exhibiting high activation energies among the scarce Nd(III) family.

Graphical abstract: High relaxation barrier in neodymium furoate-based field-induced SMMs

Back to tab navigation

Supplementary files

Article information


Submitted
16 May 2019
Accepted
24 Jun 2019
First published
24 Jun 2019

This article is Open Access

Dalton Trans., 2019,48, 15386-15396
Article type
Paper

High relaxation barrier in neodymium furoate-based field-induced SMMs

E. Bartolomé, A. Arauzo, J. Luzón, S. Melnic, S. Shova, D. Prodius, I. C. Nlebedim, F. Bartolomé and J. Bartolomé, Dalton Trans., 2019, 48, 15386
DOI: 10.1039/C9DT02047K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements