Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 13, 2019
Previous Article Next Article

Self-assembly processes of octahedron-shaped Pd6L12 cages

Author affiliations

Abstract

Self-assembly processes of three octahedron-shaped [Pd6L12]12+ cages were investigated by an NMR-based quantitative approach. As to the on-pathway of the Pd6L12 cage assembly, the final intramolecular ligand exchange in an incomplete cage, [Pd6L12Py*]12+ (Py*: 3-chloropyridine, which was used as a leaving ligand), is the rate-determining step in the self-assembly of all the three [Pd6L12]12+ cages. Contrary to the previous finding that the self-assembly of [PdmL2m]2m+ structures (m = 2, 3) and [Pd6L8]12+ capsules from rigid multitopic ligands efficiently takes place without the formation of kinetically trapped species under mild conditions, in the self-assembly of the [Pd6L12]12+ cages, even relatively rigid ditopic ligands co-produced 100 nm-sized kinetic traps through off-pathways, which would be because the energy landscape becomes more complicated by increasing the number of components in the final assembly. It was found that when Py* was used as a leaving ligand in CD3CN, the [Pd6L12]12+ cages were produced in high yield, preventing the formation of the kinetically trapped species, which indicates that the use of Py* as a leaving ligand in CD3CN is effective to obtain the thermodynamically most stable species.

Graphical abstract: Self-assembly processes of octahedron-shaped Pd6L12 cages

Back to tab navigation

Supplementary files

Article information


Submitted
15 Dec 2018
Accepted
11 Feb 2019
First published
13 Feb 2019

Dalton Trans., 2019,48, 4139-4148
Article type
Paper

Self-assembly processes of octahedron-shaped Pd6L12 cages

S. Komine, T. Tateishi, T. Kojima, H. Nakagawa, Y. Hayashi, S. Takahashi and S. Hiraoka, Dalton Trans., 2019, 48, 4139
DOI: 10.1039/C8DT04931A

Social activity

Search articles by author

Spotlight

Advertisements