Issue 12, 2019

Methoxy-substituted tetrakisquinoline analogs of EGTA and BAPTA for fluorescence detection of Cd2+

Abstract

EGTA (ethylene glycol bis(2-aminoethyl ether)-N,N,N′,N′-tetraacetic acid) and BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid) are well-known Ca2+ chelators that have four carboxylates, two nitrogen atoms and two ether oxygen atoms. In the present study, we prepared EGTQ (N,N,N′,N′-tetrakis(2-quinolylmethyl)-1,2-bis(2-aminoethoxy)ethane) and BAPTQ (N,N,N′,N′-tetrakis(2-quinolylmethyl)-1,2-bis(2-aminophenoxy)ethane) as quinoline alternatives of EGTA and BAPTA, respectively. In methanol–HEPES buffer solution (9 : 1, 50 mM HEPES, 0.1 M KCl, pH = 7.5), EGTQ exhibits fluorescence enhancement induced by Zn2+ and Cd2+ with poor selectivity, but BAPTQ did not exhibit a fluorescence response to either metal ion. Introduction of three methoxy substituents at the 5,6,7-positions of each quinoline moiety in BAPTQ specifically enhanced the fluorescence intensity of the Cd2+ complex, establishing the Cd2+-specific probe TriMeOBAPTQ (N,N,N′,N′-tetrakis(5,6,7-trimethoxy-2-quinolylmethyl)-1,2-bis(2-aminophenoxy)ethane). In contrast, TriMeOEGTQ (N,N,N′,N′-tetrakis(5,6,7-trimethoxy-2-quinolylmethyl)-1,2-bis(2-aminoethoxy)ethane) maintains a poor Cd2+/Zn2+ selectivity in its fluorescence response. Although the crystal structures of Cd2+/Zn2+ complexes with EGTQ and BAPTQ derivatives reveal the formation of multiple components including mononuclear and dinuclear complexes, the dinuclear Cd2+ and Zn2+ complexes with a linearly extended structure are regarded as possible fluorescent species in the solution. The conformational restriction of BAPTQ due to the orthophenylene moieties in the molecular skeleton is responsible for the formation of the weakly fluorescent, OH-bridged dizinc complex, which is critical to the strict Cd2+-specificity in the fluorescence response of TriMeOBAPTQ.

Graphical abstract: Methoxy-substituted tetrakisquinoline analogs of EGTA and BAPTA for fluorescence detection of Cd2+

Supplementary files

Article information

Article type
Paper
Submitted
30 Nov 2018
Accepted
23 Jan 2019
First published
23 Jan 2019

Dalton Trans., 2019,48, 3840-3852

Methoxy-substituted tetrakisquinoline analogs of EGTA and BAPTA for fluorescence detection of Cd2+

Y. Mikata, M. Kaneda, H. Konno, A. Matsumoto, S. Sato, M. Kawamura and S. Iwatsuki, Dalton Trans., 2019, 48, 3840 DOI: 10.1039/C8DT04735A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements