Issue 8, 2019

Ferroelectricity, ionic conductivity and structural paths for large cation migration in Ca10.5−xPbx(VO4)7 single crystals, x = 1.9, 3.5, 4.9

Abstract

Crystal structure, and thermal, dielectric and optical second-harmonic activities were investigated for whitlockite-type Ca8.6Pb1.9(VO4)7 (1), Ca7Pb3.5(VO4)7 (2) and Ca5.6Pb4.9(VO4)7 (3) single crystals. The refinement of the structure revealed splitting of the M3 and M4 sites into two and three sub-positions, respectively. Splitting of the M3 and M4 sites strongly enhances nonlinear optical activity, measured on powders, with the effect vanishing at ferroelectric phase transitions at elevated temperatures. Single crystals (1) and (2) undergo two structural transformations: ferroelectric one between 750–1150 K and a subsequent phase transition at higher temperatures. The structural mechanism of the ferroelectric phase transition is analyzed with respect to the rearrangement of Ca2+ and Pb2+ over their positions in the ferroelectric and paraelectric phases. Large Pb2+ ion substitution for calcium results in unit cell expansion with consequent extending of ion migration channels, thus leading to enhanced ionic conductivity in the Pb-rich materials. It is concluded that in spite of steric hindrances for lead cations, they effectively move between positions M2 → M4 → M1 or M1 → M4 → M2 together with calcium cations across the crystal. The cation conduction pathways as well as the migration energies of Ca2+ and Pb2+ cations were calculated by the bond valence energy landscape (BVEL) method. Among the obtained single crystals, (3) demonstrated the highest ionic conductivity, maximum second harmonic generation (SHS) signal and the lowest temperature of ferroelectric phase transition.

Graphical abstract: Ferroelectricity, ionic conductivity and structural paths for large cation migration in Ca10.5−xPbx(VO4)7 single crystals, x = 1.9, 3.5, 4.9

Supplementary files

Article information

Article type
Paper
Submitted
27 Oct 2018
Accepted
16 Jan 2019
First published
16 Jan 2019

CrystEngComm, 2019,21, 1309-1319

Ferroelectricity, ionic conductivity and structural paths for large cation migration in Ca10.5−xPbx(VO4)7 single crystals, x = 1.9, 3.5, 4.9

D. V. Deyneko, D. A. Petrova, S. M. Aksenov, S. Yu. Stefanovich, O. V. Baryshnikova, S. S. Fedotov, P. C. Burns, M. B. Kosmyna, A. N. Shekhovtsov and B. I. Lazoryak, CrystEngComm, 2019, 21, 1309 DOI: 10.1039/C8CE01843J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements