An advanced FeCoNi nitro-sulfide hierarchical structure from deep eutectic solvents for enhanced oxygen evolution reaction†
Abstract
A tri-metal material system of FeCoNi-based nitro-sulfide (FeCoNi-NS) hierarchical structure has been successfully synthesized via a deep eutectic solvent annealing process. The as-prepared FeCoNi-NS possesses interesting N,S-binary heteroatoms evenly doped with Fe, Co, and Ni. By taking advantage of the unique structure including multi-metal sites, high BET area and porous structures, the as-prepared FeCoNi-NS exhibited excellent oxygen evolution reaction (OER) performance, achieving a current density of 10 mA cm−2 at an overpotential of 251 mV and a low Tafel slope of 58 mV dec−1 in 1 M KOH. Furthermore, FeCoNi-NS also demonstrated highly efficient mass/charge transportation, long-term stability with 2% deactivation after ten hours continuous operation and high faradaic efficiency of 98%. Such a facile synthetic strategy is applicable to the fabrication of more mutil-metal hierarchical structures for energy conversion and storage.