Issue 44, 2019

Photocatalyzed borylation using water-soluble quantum dots

Abstract

The synthesis of arylboronates by Sandmeyer-type reactions in the presence of water still remains a significant challenge. Herein, we report the use of water-soluble MPA-capped quantum dot (QD) photocatalysts for the borylation of diazonium salts in the presence of water. A biphasic system under mild acidic conditions remains critical to prevent decomposition and competitive disulphide bond formation. The present protocol offers a broader scope of substrates and borylating agents. Additionally, this catalytic system offers a significantly high turnover number (TON). The present methodology can effectively distinguish subtle reactivity differences between boronic acids and boronates. Mechanistic investigation suggests an excited-state electron transfer pathway.

Graphical abstract: Photocatalyzed borylation using water-soluble quantum dots

Supplementary files

Article information

Article type
Communication
Submitted
02 Mar 2019
Accepted
23 Apr 2019
First published
23 Apr 2019

Chem. Commun., 2019,55, 6201-6204

Photocatalyzed borylation using water-soluble quantum dots

H. B. Chandrashekar, A. Maji, G. Halder, S. Banerjee, S. Bhattacharyya and D. Maiti, Chem. Commun., 2019, 55, 6201 DOI: 10.1039/C9CC01737B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements