Issue 6, 2019

Responsive surface bioaffinity binding to construct flexible and sensitive electrochemical aptasensors

Abstract

The development of simple, flexible, cost-effective and sensitive electrochemical biosensing strategies is highly desirable to advance their applications in disease diagnostics and clinical biomedicine. Herein, we fabricated a new enzyme-based electrochemical aptasensor with the use of adenosine triphosphate (ATP) and thrombin as model targets on the basis of a responsive surface bioaffinity binding strategy. It took full advantage of an immobilized complex duplex probe (hybrids of a hairpin-like aptamer probe with a digoxigenin (Dig)-labeled immobilization strand) to effectively inhibit the approach of the bulky horseradish peroxidase linked-anti-Dig antibody (anti-Dig-HRP) to the Dig on the electrode due to the steric effect. The target recognition dissociated the aptamer strand from the duplex probe and exposed the Dig for its effective binding with anti-Dig-HRP. The successive electrocatalysis offered a significantly amplified electrochemical signal correlated with the target recognition event. Sensitive detection toward ATP and thrombin was achieved with detection limits of 0.87 nM and 6.3 pM, respectively. The proposed strategy is simple and sensitive without any complex operations that hinder many amplified aptasensors. Also, the target recognition and signal reporting units are relatively isolated, making the biosensor fabrication more flexible. It thus provided a new and versatile pathway for sensitive biosensor fabrication.

Graphical abstract: Responsive surface bioaffinity binding to construct flexible and sensitive electrochemical aptasensors

Supplementary files

Article information

Article type
Paper
Submitted
29 Nov 2018
Accepted
29 Jan 2019
First published
29 Jan 2019

Analyst, 2019,144, 2130-2137

Responsive surface bioaffinity binding to construct flexible and sensitive electrochemical aptasensors

Y. Liu, Z. Zhu, C. Wang, R. Gao, X. Yang and S. Liu, Analyst, 2019, 144, 2130 DOI: 10.1039/C8AN02313A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements