Issue 30, 2017

Layered double hydroxides toward high-performance supercapacitors

Abstract

The urgent demand for clean energies and rapid development of modern electronic technologies have led to enthusiastic research on novel energy storage technologies, especially for supercapacitors. The most important part is designing electrode materials with excellent capacitive performance. Layered double hydroxides (LDHs) have sparked intense interest among researchers in the past decade due to the facile tunability of their composition, structure and morphology. Various and fruitful accomplishments have been achieved toward developing LDH-based materials for supercapacitor electrodes. This review outlines the recent advances in the designing of LDH-based electrode materials for supercapacitors. Feasible and practical strategies for improving the capacitive performance of LDH-based materials have been discussed and highlighted in terms of tuning the composition of LDHs, designing the electrode structure and assembling applicable supercapacitor devices. Through the ceaseless efforts of scientists, the capacitive performance and practicability of LDH-based materials have been greatly ameliorated, making them more competitive for modern energy storage applications.

Graphical abstract: Layered double hydroxides toward high-performance supercapacitors

Article information

Article type
Review Article
Submitted
09 May 2017
Accepted
29 Jun 2017
First published
29 Jun 2017

J. Mater. Chem. A, 2017,5, 15460-15485

Layered double hydroxides toward high-performance supercapacitors

X. Li, D. Du, Y. Zhang, W. Xing, Q. Xue and Z. Yan, J. Mater. Chem. A, 2017, 5, 15460 DOI: 10.1039/C7TA04001F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements