Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 3, 2018
Previous Article Next Article

Single-crystalline Gd-doped BiFeO3 nanowires: R3c-to-Pn21a phase transition and enhancement in high-coercivity ferromagnetism

Author affiliations

Abstract

We fabricated single-crystalline, Gd-doped BiFeO3 (BFO) nanowires using a hydrothermal technique. X-ray diffraction (XRD) data combined with their Rietveld refinements and high-resolution transmission electron microscopy (HRTEM) revealed pure single-phase crystalline Bi1−xGdxFeO3 (x = 0, 0.05, 0.10) nanowires of 40–60 nm diameter and their structural transformation from the rhombohedral R3c (for x = 0 and 0.05) to the orthorhombic Pn21a crystal structure (for x = 0.10). The addition of Gd3+ ions to the pure-phase BFO leads to remarkable changes in the structural and magnetic properties, and these effects are caused by differences in the ionic-radii and magnetic moment between the Bi3+ and Gd3+ ions. According to the observed magnetization-field (M–H) and magnetization-temperature (MT) curves, with increasing Gd3+ concentration, the saturation magnetization (MS), squareness (Mr/MS), coercivity (HC), exchange-bias field (HEB) and magnetocrystalline anisotropy (K) increased markedly, by MS = 1.26 emu g−1 (640%), Mr/MS = 0.19 (20.5%), HC = 7788 Oe (4560%), HEB = 501 Oe (880%) and K = 1.62 × 105 erg cm−3 (3500%), for x = 0.10 relative to the data for x = 0. In such Gd-doped BFO nanowire samples, spin-canted Dzyaloshinskii–Moriya interaction, remarkable enhancements in the magnetocrystalline anisotropy as well as uncompensated surface ferromagnetic spin states in the antiferromagnetic core regions were also found. Such remarkable enhancements in Gd-doped BFO nanowires might offer a variety of spintronic applications.

Graphical abstract: Single-crystalline Gd-doped BiFeO3 nanowires: R3c-to-Pn21a phase transition and enhancement in high-coercivity ferromagnetism

Back to tab navigation

Article information


Submitted
22 Nov 2017
Accepted
11 Dec 2017
First published
11 Dec 2017

J. Mater. Chem. C, 2018,6, 526-534
Article type
Paper

Single-crystalline Gd-doped BiFeO3 nanowires: R3c-to-Pn21a phase transition and enhancement in high-coercivity ferromagnetism

S. K. S. Patel, J. Lee, M. Kim, B. Bhoi and S. Kim, J. Mater. Chem. C, 2018, 6, 526
DOI: 10.1039/C7TC05362B

Social activity

Search articles by author

Spotlight

Advertisements