Issue 4, 2018

The architecture of the electron transport layer for a perovskite solar cell

Abstract

The emergence of perovskite solar cells (PSCs) recently has brought new hope to the solar cell industry due to their incredible improvement of the power conversion efficiency (PCE), which can now exceed 20.0% within seven years of tremendous research. The efficiency and stability of PSCs depend strongly on the morphology and type of materials selected as the electron transport layer (ETL) in the device. In this review, the functions of the ETL based on titania (TiO2) in n–i–p architecture PSCs, including planar heterojunction and mesoporous-structured devices, are reviewed in terms of the device performance and stability. Studies found that the application of suitable fabrication techniques and manipulation of the nanostructural properties of TiO2 are crucial factors in ameliorating the short-circuit current density, JSC, and fill factor, FF, of PSCs. On top of that, the effect of substituting TiO2 with other potential inorganic materials like zinc oxide (ZnO), tin oxide (SnO2), ternary metal oxides, and metal sulphides, as well as organic semiconductors including fullerene, graphene, and ionic liquids, towards the photovoltaic properties and stability of the devices are also elaborated and discussed. Meanwhile, the utilization of non-electron transport layers (non-ETLs), such as alumina (Al2O3) and zirconia (ZrO2), as the mesoporous scaffold in PSCs is found to enhance the open-circuit voltage, VOC, of the devices.

Graphical abstract: The architecture of the electron transport layer for a perovskite solar cell

Article information

Article type
Review Article
Submitted
12 Oct 2017
Accepted
24 Nov 2017
First published
24 Nov 2017

J. Mater. Chem. C, 2018,6, 682-712

The architecture of the electron transport layer for a perovskite solar cell

M. F. Mohamad Noh, C. H. Teh, R. Daik, E. L. Lim, C. C. Yap, M. A. Ibrahim, N. Ahmad Ludin, Abd. R. B. Mohd Yusoff, J. Jang and M. A. Mat Teridi, J. Mater. Chem. C, 2018, 6, 682 DOI: 10.1039/C7TC04649A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements