Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

This study demonstrated that incorporation of Ca2+-responsive β-roll peptides arising from repeat-in-toxin (RTX) into elastomeric proteins provided an approach to construct hydrogels that exhibit Ca2+-responsive mechanical properties through a force analysis-based approach. Use of circular dichroism spectroscopy confirmed that there was a Ca2+-induced conformational change of RTX-based recombinant polyproteins. The polyproteins could be crosslinked into solid hydrogels. Shrinking/swelling measurements showed a Ca2+-responsive dimensional change of the RTX-based hydrogels. Mechanical measurements at constant pulling speed and at constant extension suggested that the mechanical properties of the RTX-based hydrogels were Ca2+-responsive. Experimental single molecule force spectroscopies were used to investigate the nano-mechanical stability of the RTX domains. Single molecule atomic force microscopy and optical tweezers provided evidence that the Ca2+-dependent refolding of the intrinsically disordered RTX led to the force increase. The results indicated that the unique Ca2+-responsive mechanical properties of the RTX-based hydrogels at the macroscopic level could be attributed to the nano-mechanical properties of the RTX domains engineered into individual polyproteins at the single molecule level.

Graphical abstract: Using single molecule force spectroscopy to facilitate a rational design of Ca2+-responsive β-roll peptide-based hydrogels

Page: ^ Top