Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 36, 2018
Previous Article Next Article

Hydrothermal synthesis of N,S co-doped carbon nanodots for highly selective detection of living cancer cells

Author affiliations

Abstract

This study presents a facile synthesis method for the preparation of positively charged N,S co-doped carbon nanodots with excellent optical properties, and it develops a selective method for fluorescent detection of living cancer cells. The specific recognition is due to the application of an aptamer sequence, which shows high affinity and specificity to target cells. The aptamer is firstly labeled with BHQ and wraps around the carbon nanodots, then it finally quenches the fluorescence emission of the carbon nanodots. For the sensitive and selective analysis of target cells, the cells are simply mixed with the carbon nanodot–aptamer nanoconjugates, which are then centrifuged at a low speed. The recognition reaction between aptamer and target cells releases the quencher from the surface of the carbon nanodots and the centrifugation process enables the recovery of fluorescence intensity of the suspension, which reflects the level of initial cancer cells. The developed method is simple, highly selective and cost-effective, thus, it may be further exploited in clinical applications in the future.

Graphical abstract: Hydrothermal synthesis of N,S co-doped carbon nanodots for highly selective detection of living cancer cells

Back to tab navigation

Supplementary files

Article information


Submitted
14 May 2018
Accepted
20 Aug 2018
First published
20 Aug 2018

J. Mater. Chem. B, 2018,6, 5775-5780
Article type
Paper

Hydrothermal synthesis of N,S co-doped carbon nanodots for highly selective detection of living cancer cells

W. Cheng, J. Xu, Z. Guo, D. Yang, X. Chen, W. Yan and P. Miao, J. Mater. Chem. B, 2018, 6, 5775
DOI: 10.1039/C8TB01271G

Social activity

Search articles by author

Spotlight

Advertisements