Issue 29, 2018

Black phosphorus analogue tin sulfide nanosheets: synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy

Abstract

Two-dimensional (2D) inorganic nanomaterials for biomedical applications still face the challenge of simultaneously offering a high photothermal conversion efficiency (PTCE), efficient drug delivery, biocompatibility and biodegradability. Herein, cancer treatment using tin sulfide nanosheet (SnS NS)-based dual therapy nano-platforms (SDTNPs), including photothermal- and chemo-therapy, is demonstrated. SnS, a black phosphorus (BP) analogue binary IV–VI compound, was synthesized using liquid phase exfoliation. SnS NSs comprising 2–4 layers exhibited good biocompatibility and a high PTCE of 39.3%, which is higher than other popular 2D materials. The SnS NSs showed a stable photothermal performance over 2 h of laser irradiation and exhibited ∼14% degradation after 10 h of irradiation. It was also found that SnS NSs show high loading of small molecules such as doxorubicin (DOX) (up to ∼200% in weight). Consequently, the SDTNPs achieved notable tumor therapy through the combination of photothermal- and chemo-therapy both in vitro and in vivo. Our study may pave the way for the biomedical application of SnS and other IV–VI compound-based 2D nanomaterials. Compared with traditional therapies, SnS NS-based laser therapy is green and efficient, due to its biocompatibility, photo-degradability, high efficiency photothermal properties and high drug loading.

Graphical abstract: Black phosphorus analogue tin sulfide nanosheets: synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy

Supplementary files

Article information

Article type
Paper
Submitted
17 Mar 2018
Accepted
02 Jun 2018
First published
05 Jun 2018

J. Mater. Chem. B, 2018,6, 4747-4755

Black phosphorus analogue tin sulfide nanosheets: synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy

Z. Xie, D. Wang, T. Fan, C. Xing, Z. Li, W. Tao, L. Liu, S. Bao, D. Fan and H. Zhang, J. Mater. Chem. B, 2018, 6, 4747 DOI: 10.1039/C8TB00729B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements