Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 18, 2018
Previous Article Next Article

Covalent functionalization of graphene oxide with d-mannose: evaluating the hemolytic effect and protein corona formation

Author affiliations

Abstract

In this work, graphene oxide (GO) was covalently functionalized with D-mannose (man-GO) using mannosylated ethylenediamine. XPS (C1s and N1s) confirmed the functionalization of GO through the binding energies at 288.2 eV and 399.8 eV, respectively, which are attributed to the amide bond. ATR-FTIR spectroscopy showed an increase in the amine bond intensity, at 1625 cm−1 (stretching C[double bond, length as m-dash]O), after the functionalization step. Furthermore, the man-GO toxicity to human red blood cells (hemolysis) and its nanobiointeractions with human plasma proteins (hard corona formation) were evaluated. The mannosylation of GO drastically reduced its toxicity to red blood cells. SDS-PAGE analysis showed that the mannosylation process of GO also drastically reduced the amount of the proteins in the hard corona. Additionally, proteomics analysis by LC–MS/MS revealed 109 proteins in the composition of the man-GO hard corona. Finally, this work contributes to future biomedical applications of graphene-based materials functionalized with active biomolecules.

Graphical abstract: Covalent functionalization of graphene oxide with d-mannose: evaluating the hemolytic effect and protein corona formation

Back to tab navigation

Supplementary files

Article information


Submitted
16 Nov 2017
Accepted
08 Apr 2018
First published
10 Apr 2018

J. Mater. Chem. B, 2018,6, 2803-2812
Article type
Paper

Covalent functionalization of graphene oxide with D-mannose: evaluating the hemolytic effect and protein corona formation

M. de Sousa, C. H. Z. Martins, L. S. Franqui, L. C. Fonseca, F. S. Delite, E. M. Lanzoni, D. S. T. Martinez and O. L. Alves, J. Mater. Chem. B, 2018, 6, 2803
DOI: 10.1039/C7TB02997G

Social activity

Search articles by author

Spotlight

Advertisements