Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 47, 2018
Previous Article Next Article

Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries

Author affiliations

Abstract

Potassium-ion batteries (KIBs) are considered as a promising competitor to other metal-ion battery systems due to their low-cost and large-scale energy storage. However, their development is hindered by poor intercalation property of K ions in electrodes due to the heavier weight and larger size of K ion than those of Li ion. Therefore, achieving an ultra-long cycle life with high capacity and excellent rate capability remains a significant challenge for KIB electrodes. Herein, activated hollow carbon nanospheres (AHCSs), with enlarged interlayer spacing, oxygen-containing functional groups (OCFGs) on the surface and high specific surface area, are proposed as a new anode electrode for high-performance KIBs. Ex situ XRD and TEM results demonstrated that the enlarged interlayer spacing allow more reversible K ion intercalation into the carbon layer and readily accommodated large (de)potassiation strain without fracture, while OCFGs on AHCSs enhanced pseudocapacitance type behavior and specific capacity. Due to the synergistic effect of these structural features, the AHCSs served as anode for KIBs, exhibiting impressive electrochemical properties with high initial charge capacity of 370.2 mA h g−1 at 0.2 A g−1, ultra-long cycling life for 5000 cycles at a high current density of 2.0 A g−1, as well as prominent rate capability of 137.0 mA h g−1 at 4.0 A g−1. This study highlights the significant role of interlayer spacing, surface oxygen functionalization and hierarchical porosity of carbon-based anodes in potassium storage.

Graphical abstract: Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries

Back to tab navigation

Supplementary files

Article information


Submitted
10 Oct 2018
Accepted
06 Nov 2018
First published
06 Nov 2018

J. Mater. Chem. A, 2018,6, 24317-24323
Article type
Paper

Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries

G. Wang, X. Xiong, D. Xie, Z. Lin, J. Zheng, F. Zheng, Y. Li, Y. Liu, C. Yang and M. Liu, J. Mater. Chem. A, 2018, 6, 24317
DOI: 10.1039/C8TA09751H

Social activity

Search articles by author

Spotlight

Advertisements