Issue 46, 2018

Highly efficient planar perovskite solar cells achieved by simultaneous defect engineering and formation kinetic control

Abstract

The formation of high quality (good morphology and low defect concentrations) perovskite films is crucial for realizing high-performance perovskite solar cells (PVSCs). Low-temperature processed perovskite films tend to have a high density of defect states, which hinder the enhancement of their device performance. Although various post-treatment methods have been reported to passivate the surface defects of perovskite, the critical issue is that defects inside the bulk film cannot be passivated simultaneously. Here, we demonstrate a new strategy of simultaneously controlling the perovskite formation kinetics and reducing the defects (e.g., unsaturated Pb) for achieving densely packed perovskite films with low defect concentrations. The strategy is realized through incorporating cyano-based small molecules into perovskite precursor. Our results show that the inverted planar-structured PVSCs with the perovskite films formed by the new strategy have significant performance improvement with PCE reaching 20.10%, which is among the highest values of low-temperature processed solar cells. This work provides a new strategy to further improve the quality of low-temperature processed perovskite films and the relevant device performances.

Graphical abstract: Highly efficient planar perovskite solar cells achieved by simultaneous defect engineering and formation kinetic control

Supplementary files

Article information

Article type
Paper
Submitted
11 Sep 2018
Accepted
06 Nov 2018
First published
07 Nov 2018

J. Mater. Chem. A, 2018,6, 23865-23874

Highly efficient planar perovskite solar cells achieved by simultaneous defect engineering and formation kinetic control

J. Cheng, H. Zhang, S. Zhang, D. Ouyang, Z. Huang, M. K. Nazeeruddin, J. Hou and W. C. H. Choy, J. Mater. Chem. A, 2018, 6, 23865 DOI: 10.1039/C8TA08819E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements