The synthesis, characterization and electrochemical performance of hollow sandwich microtubules composed of ultrathin Co3O4 nanosheets and porous carbon using a bio-template†
Abstract
Biomorphic 2D Co3O4 nanosheets/mesoporous carbon microtube composites are solvothermally prepared and subsequently calcined using ramie as a biotemplate. The as-prepared composites are fabricated using two sides of Co3O4 nanosheets (NSs) supported on porous carbon microtubes and exhibit a unique tubular morphology and porous features. The present biomorphic materials show a specific capacitance of 1280.6 F g−1 at 1 A g−1, and outstanding charge–discharge cycle stability with a capacitance retention of 96.89% after 15 000 cycles. The remarkable pseudocapacitive performance and cyclability are attributed to the unique microstructure, the high specific surface area and the optimized hierarchical microstructure inherited from the biotemplate.

Please wait while we load your content...