Issue 39, 2018

Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co3O4@polypyrrole core–shell nanorod bundle array electrodes

Abstract

Flexible supercapacitors with high areal capacitance are a promising approach for wearable energy-storage technology due to the limitation of the surface area of the human body (about 2 m2). Meanwhile, a tolerance to deformation and mechanic damage is critical for wearable applications. However, it is still a challenge to achieve supercapacitors with outstanding electrochemical performance and wearability, simultaneously. To solve this problem, we report high-performance, flexible, and tailorable solid-state supercapacitors enabled by Co3O4@PPy nanorod bundle arrays immobilized on carbon fiber cloth (CFC). Furthermore, a solid-state asymmetric supercapacitor was assembled using a freestanding Co3O4@PPy electrode, a freestanding porous carbon electrode, and PVA gel electrolyte. Benefiting from a 3D structure and the synergetic contribution of the Co3O4 nanorods and electrically conductive PPy layer, the Co3O4@PPy electrode and our developed supercapacitor exhibit a high areal capacitance of 6.67 F cm−2 at a current density of 2 mA cm−2, and 2.47 F cm−2 at 4 mA cm−2, respectively, as well as excellent rate capability. More importantly, the solid-state supercapacitor can be tailored into several units and various shapes. Each unit retains its original electrochemical performance. This work provides a new route to wearable energy-storage technology.

Graphical abstract: Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co3O4@polypyrrole core–shell nanorod bundle array electrodes

Supplementary files

Article information

Article type
Paper
Submitted
02 Aug 2018
Accepted
11 Sep 2018
First published
11 Sep 2018

J. Mater. Chem. A, 2018,6, 19058-19065

Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co3O4@polypyrrole core–shell nanorod bundle array electrodes

L. Ma, H. Fan, X. Wei, S. Chen, Q. Hu, Y. Liu, C. Zhi, W. Lu, J. A. Zapien and H. Huang, J. Mater. Chem. A, 2018, 6, 19058 DOI: 10.1039/C8TA07477A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements